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1. Introduction 

Relative humidity is usually measured in aerological 
observations and dew point depression is usually reported in 
upper-air reports. 
to other moisture variables in meteorological analysis. If 
relative humidity is converted to vapor pressure, most humidity 
variables can then be determined. Elliott and Gaffen (1991) 
reviewed the practices and procedures of the US radiosonde 
system. In their paper, a comparison of the relative errors was 
made between the saturation vapor pressure formulations of Tetens 
(1930), Goff-Gratch (1946), Wexler (1976), and Buck (1981). In 
this paper, we will expand the analysis of Elliott and Gaffen by 
deriving several new saturation vapor pressure formulas, and 
reviewing the various errors in these formulations. We will show 
that two of the new formulations of vapor pressure over water and 
ice are superior to existing formulas. 

Upper air temperature data are found to vary from about +50 C 
to -80 C. This large variation requires a saturation vapor 
pressure equation to be accurate over a large temperature range. 
While the errors introduced by the use of relatively inaccurate 
conversion equations are smaller than the errors due to the 
instruments, dewpoint coding errors, and dewpoint conversion 
algorithms (Elliott and Gaffen, 1993); they introduce additional 
systematic errors in humidity data. 

The most precise formulation of vapor pressure over a plane 
surface of water was given by Wexler (1976). 
of Tetens' (1930) formula and one due to Buck (1981) (Buck's 
equation is recommended in the Federal Meteorological Handbook 
No. 3, 1991) are shown in Table I. The relative errors in this 
table are the predicted value minus the Wexler value divided by 
the Wexler value. Table I shows that in a standard atmosphere at 
low temperatures the relative errors are large and, more 
importantly, systematic. The magnitude and distribution of the 
relative errors are different for different approximations. 

Humidity data that exists in publications or databases have 
frequently been converted using formulations of saturation vapor 
pressure based on various fits to the data (such as Wexler 
(1976), Goff and Gratch (1946), and Sonntag (1990)). In order to 
use older data together with new data, it is desirable to develop 
new approximations which are simple to use and minimize the 
difference between these methods. The purpose of this research 
is to find Magnus' form approximations of saturation vapor 
pressure which are close to the three prominent formulations of 
saturation vapor pressure, and accurate. 

These variables must frequently be converted 

The relative errors 

2 .  Definitions 

Pure water vapor in a state of equilibrium with a plane 
surface of pure water or ice at the same pressure and temperature 
is said to be saturated. 
water vapor is a function of temperature alone (Clapeyron- 

The saturation vapor pressure of pure 
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Table I. Relative errors(%) of 
Buck's (BU81) and Tetens' (TE30) 
approximations. 
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Clausius equation). The saturation vapor pressure of pure water 
vapor is denoted by E, or Ei for saturation with respect to water 
or ice, respectively. 

When moist air exists in a state of equilibrium with a surface 
of pure water or ice, it is said to be saturated. The saturation 
vapor pressure of moist air is denoted by E, and Eh for 
saturation with respect to water and ice, respectively. 

departure of the mixture of air and water vapor from the ideal 
gas laws, and it is given by 

A correction factor, F, is defined which accounts for the 

In this paper, capital E ' s  will refer to basic formulations of 
vapor pressure (Wexler, Goff and Gratch, and Sonntag), and small 
e's will refer to approximations to the basic vapor pressure 
formulations (e.g. Buck). Capital T is temperature in degrees 
Kelvin, small t is temperature in degrees Celsius, and pressure 
(p,e,and E) is in units of hPa (mbs). 

Calculations of humidity in meteorology are based on using the 
saturation vapor pressure over a surface ofawater or ice, and 
this calculation depends only on temperature. Since the 
undercooling of water below its melting point is common in 
clouds, the WMO (1966) recommends that vapor pressure over a 
plane of water be used for calculation of humidity variables for 
negative temperatures. 
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3.Basic formulations of vapor pressure 

The first accurate formula for vapor pressure was developed by 
Goff and Gratch (1945) (we denote this paper by GG45): 

where E,  - saturation vapor pressure in hPa with respect to a 
plane surface of pure water; 

T - temperature in K; 
T, - temperature at the steam point (=373.16 K); 
E, - saturation vapor pressure in hPa at the steam point 

temperature (=1013.246 hPa). 

This formulation was soon modified by Goff and Gratch (1946) 
(we denote this paper by GG46): 

InE, = 10.79574(l-T1/T) -5.02800 In (T/T,)  
) -4 1-108.2969(1-T/Ti) + 1.50475~10 ( 

+ 0.78614, 
) 4 .76955  ( l - T , / n  - 0.42873~10'~(1-10 

(3) 

where T, is the temperature at the triple point of water (273.16 
K) 

This second formulation was significantly different from (2), 
the difference being more than 5%. Equation (3) was recommended 
by the WMO in 1966 for use in meteorological calculations and is 
Still in use in many countries. The Smithsonian meteorological 
tables (List, 1949) are based on this equation. 

a new analysis: 
Goff (1965) revised the formulation, denoted as GG65, based on 

lnE, = 10.79586 ( l - T l / T )  -5.02808 In ( T / T l )  
+ 1.50474~10-4 (1-108*29692(1-T/T1) ) 

) 4.76955 (l-T,/n - 0.42873~10-~(1-10 - 2.2195983 + Ig E,,, 

( 4 )  

where E,,,, is the saturation vapor pressure in hPa at the steam 
point temperature (1013.246 hPa). 

from equation (3) developed in 1946. The largest relative 
But this approximation, ( 4 ) ,  is not significantly different 
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difference between the GG65 and the GG46 formulations is 0.008 
percent at -40 C between -40 C and +50 C. 
equations are essentially identical. 

which was based on new measurements (Stimson, 1969; Guildner et 
al., 1976) and a new value of the gas constant (Cohen and Taylor, 
1973). We denote this formulation as WE76: 

The GG65 and GG46 

In 1976, Wexler published a new vapor pressure formulation 

E, = 0.01exp(-2.9912729x103 T-2  - 6.0170128~10~ T- l  
+ 1.887643845~10~ - 2.8354721~10-~ T 
+ 1.7838301~10-~ T2 - 8.4150417X10-10 T3 
+ 4.4412543~10-~~T~ + 2.858487 In T )  . 

( 5 )  

The values of saturation vapor pressure from Wexler's 
formulation, (5), are markedly different from Goff and Gratch's 
(1946) equations at negative temperatures. The largest relative 
difference between these formulations is 0.700 percent for 
temperatures between -40 C and 0 c (at -40 C) and 0.045 percent 
for temperatures between 0 and +50 C (at 0 C). 

Sonntag and his colleague Heinze have conducted several 
important investigations of the relationship between vapor 
pressure and temperature. In 1982, Sonntag and Heinze published 
equations f o r  saturation vapor pressure based on the 
"International Temperature Scale 1968" (S082): 

E, = e- ( -  6094.4642 T6-l + 16.519825 - 2 .7245552X10-2 T 6 8  

+ 1.6853396~10-~ Tt8 + 2.433502 1nr68) I 

where TM is the temperature in K in Temperature Scale 1968. In 
1990, Sonntag published a formulation, denoted as 5090, of vapor 
pressure based on the new ttInternational Practical Temperature 
Scale 1990st: 

E, = e m ( -  6096.9385 T9-t + 16.635794 - 2.711193X10-2T9, 
+ 1.673952~10-~ T& + 2.433502 InT,,) 

( 7 )  

where Tm is the temperature in K in Temperature Scale 1990. 

significantly different from Wexler's formulation, equation (5). 
The largest relative difference between Wexler's formulation and 
Sonntag's 1982 formulation is 0.055 percent at 50 C, and the 
largest difference between the 1990 formulation and Wexler's is 
0.120 percent at 50 C. 

Figure 1 shows the relative differences between the S082, 

Saturation vapor pressures calculated from (6) and (7) are not 
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S090, GG45, and the WE76 formulations with respect to the GG46 
formulation. 

calculating saturation vapor pressure. First, the most widely 
used and approved by the WMO for use in meteorological practice 
is the GG46 formulation: second; the more recent, and (we 
believe) more accurate WE76 formulation which is also widely 
used; and finally, the SO90 formulation which differs only 
slightly from the WE76 formulation. 

the errors between it and the three basic formulations (GG46, 
WE76, and S090). Such an approximation will be highly accurate, 
and it will minimize the disruption due to the introduction of a 
new equation. 

As we have pointed out, there are three basic formulations for 

An ideal saturation vapor pressure approximation will minimize 

4. Approximations of vapor pressure over water 

Vapor pressure formulations WE76, GG46, and SO90 are very 
complex and inconvenient. This complexity has led to various 
simplified and less accurate approximations of vapor pressure. 
Good reviews of these approximations can be founded in Sargent 
(1980) , Abbott and Tabony (1985) , Alduchov (1988) , and Elliott 
and Gaffen (1991). Some of the most widely applicable 
approximations are shown in Table 11. 

The most convenient form, equation (8), is due to Magnus 
(1844) 

or 

al t/ Ib+ t )  E, = c 10 * 

where t is the temperature in C and 

a= a, In 10. 

( 9 )  

The main reason to derive approximations to the basic 
formulations is simplicity; it is easier to convert between 
temperature and the saturation vapor pressure with minimal error. 
The requirements of simplicity and minimal error will eliminate 
many of the approximations. It is difficult to suggest a more 
convenient form for the saturation vapor pressure than the 
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Magnus I form. 

saturation vapor pressure approximation is insufficient accuracy 
when the Magnus' formula is used with published coefficients (a, 
b, c). However, as shown below, it is possible to develop highly 
accurate vapor pressure formulations using the Magnusf form. We 
shall find coefficients a, b and c which will accurately 
approximate all three basic formulations of the saturation vapor 
pressure. 

e(t), we need a criterion of accuracy. We shall assume that the 
observation error of the thermistor is zero, and the temperature 
error is due only to roundoff. It is standard meteorological 
practice to report temperature to a tenth of a degree. 
Therefore, the roundoff error in temperature will be less than or 
equal to 0.05 degree. The error in the vapor pressure due to 
this temperature error in any basic formulation, E, is 

The motivation for the appearance of new approximations for 

To determine the accuracy of a vapor pressure approximation, 

We will say that a particular approximation, e(t), is 
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accurate, if the difference between this approximation and a 
corresponding basic formulation is not more than the error in 
vapor pressure due to the temperature roundoff error. Hence, the 
measure of accuracy for approximation e ( t )  is 

The approximation e(t) is sufficiently accurate if d I 1. 
For example, d I 1, means that the relative error with respect to 
the GG46 formulation is less than or equal to 0.52 % at - 4 0  C and 
0 . 2 5  % at 50 C. This definition of accuracy, (12), leads to 
almost identical limits of relative error for the WE76 
formulation. 

We determined the accuracy of each approximation, e, with 
respect to the three basic formulations of vapor pressure (GG46, 
WE76, and 5090). We denote the measures of accuracy from 
equation (12) as dg,  d,, and a,, respectively. The measure of 
accuracy with respect to all three formulations, c?,, is defined 
as 

We will denote the maximum relative errors for these 
approximations by rg, r,, r,, respectively. We define r, as 

Using these definitions of error, we can find coefficients a, 
b, and c for the Magnus' formula ( 8 )  which minimize rg for the 
approximations AEGR, minimize r, for AEWR, minimize r, for AESR, 
and minimize r, for AEKR (see Table 11). 

The techniques used to develop the Magnus' form equations are 
given in the appendix. We have chosen to use the minimum of the 
maximum deviation rather than, say, minimizing the total 
deviation over the range or a least squares fit, because it will 
not permit the equation to have any large magnitude deviations 
from the basic formulation. A least squares fit or a minimum of 
the maximum can allow large deviations from the basic 
formulation. 
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Table 111. Maxima of relative errors (r %) and measures of 
accuracy (d) for various basic formulations and approximations of 
saturation vapor pressure over water. Temperatures is - 4 0  to 
SOC. Temperature in C at the maximum is given in brackets. 

GG45 5.109(-40) 9.825(-40) 
6665 1 .008(-40) .016(-40) 
SO68 .?32(-40) 1.407(-40) 

5.768( -40) 11.145(-40) 5.724(-40) 11.057( -40) 5.768( -40) 11.145 (-40) 
.703(-40) 1.359(-40) .657(-40) 1.269(-40) .703(-40) 1.358(-40) 
.055( 50) .223( 50) .078(-40) .260( 50) .732( SO) 1.407(-40) 

We have found several approximations which do not minimize the 
relative errors, but maximize accuracy. These approximations 
are: AEGD (min d,), AEWD (min dw), AESD (min d,), and AEKD (min 
d,). See Table I1 for the equations. 

Table I11 shows the relative errors and measure of accuracy 
for the new approximations, and commonly used approximations. 
Note that the maximum relative errors usually occur at the end 
points of the temperature range (-40 C, 50  C). Table I11 shows 
that only three of the approximations satisfy the criterion for 
accuracy, d, I 1. They are BU-2, an approximation of Buck 
(1981), and two approximations we have found (AEKR and AEKD). 
The AEKR and AEKD approximations have the Magnusf form. These 
two approximations maximize accuracy and minimize errors, in that 
d, and r, are smallest for these approximations. 

Fig. 2 shows part of the surface d, (a ,b ,c )  in the neighborhood 
of the minimum for approximation AEKD (c=6.2202). The 
coefficients a and b for several Magnusf form approximations are 
shown. Clearly, this surface is complex, and it has several 
local minimums. Fig. 2b is an enlargement of the rectangular 
area of Fig 2a. The hashed area contains the region in which 
coefficients a and b satisfy the requirement that d, I 1, and c = 
6.1102. 
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Fig.3 shows the behavior of several vapor pressure 
approximations with respect to the Wexler formulation for 
temperatures between -40 C and 50 C.  Fig. 3 shows that several 
of the approximations are excellent over the temperature range of 
0 C to 40 C, and that the AEKR Magnusf formulation is the most 
accurate over the entire -40 C to 50 C temperature range. 

40 to -80 C, we will find that differences between the basic 
formulations increase. For example, the relative difference 
between the GG46 and WE76 formulations is more then 10% at -80 C 
with respect to WE76. Obviously it will be impossible to 
approximate all three formulations with a relative errc;r of less 
then 5%. The best way to find an accurate approximation is to 
choose the basic formulation to use and develop an approximation 
for this formulation. We have found the three best, minimum 
relative errors, approximations for the temperature range from 
+50 to -80 C: 

When we extend the lower limit of the temperature range from - 

BU8 1 
SA9 0 
AEKR 

AEGR,,,-,, ( t) = 6.1037 e17.641t/(243.27+t) , 
AEWR,,, -80 ( t) = 6 .06 12 ele*loz t / ( 2 4 9 - 5 2 + t )  , 
AESR50,-80 (t) = 6.0620 e18*112t/(249-59+t) , 

4 . 8 5 0 /  6.005 14.423j18.499 14.312/18.355 
0.707/ 1.252 9.425/10.089 9.308/11.937 
0.539/ 0.822 10.067j12.067 9.951j12.767 

(0,337/0.823) 
(0.852/3.429) 
(0.845/3.386) ' 

In brackets are given the maximum relative errors and measure of 
accuracy for the corresponding approximation. For comparison we 
show in Table IV the relative errors and measure of accuracy for 
three approximations with respect to the three basic formulations 
for temperzture range from 50 to -80 C. 

5. Approximations of vapor pressure over ice. 

There are also three main models for calculating saturation 
vapor pressure over a plane surface of ice. The model equations 
are valid for the temperature range of -80 C to 0 C. The first 
accurate model (GG46i) was developed by Goff and Gratch (1946), 
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and it is given by 

lnE, = 9.096936 (l-Tl/T) - 3.56654111 (TI/") 
+ 0.876817 ( l - T / T o )  - 2.2195983 + hE,, 

where: Ei is the saturation vapor pressure in hPa with respect 
to a plane surface of ice; 

T is the temperature; 
T, is the temperature at the triple-point of water; 
Em is the saturation vapor pressure at the steam point 

temperature. 
Wexler's (1976) formulation (WE76i) is given by 

and 

Ei = 0. Olexp (-5. 8653696x103T-l+ 2.2241033~10 
+ 1.3749042~lO-~T - 3.4O31775~10-' T2 
+ 2.6967687~10'~T~ + 0.69186511nT), 

Sonntag' s formulation (So9oi) is given 

We have derived coefficients a, b and c for the general 
Magnus' formula (8) , which minimize d , ,  d,, a,, and d,, over the 
temperature range of -80 C to 0 C witk respect to the basic 
formulations; GG46i, WE76i, and SO9Oi. Applying equations (12) 
and (13) to the basic formulations, we define measures of 
accuracy: dgi, d,, a,, and d,. The equations for these new 
approximations are given in Table V. 

saturation vapor pressure over ice which maximize accuracy. 
These new approximations are AEGDi, AEWDi, AESDi, and AEKRi. 
Table IV gives the new approximations and Table V shows their 
relative error and measure of accuracy. Several approximations, 
which are commonly used to calculate saturation vapor pressure 
over ice, are also given in Table V. 

Magnus' form equations for calculating saturation vapor 
pressure over ice were also found, which minimized the relative 
error. These new equations, which are given in Table V, are 
denoted by AEKRi, AEGRi, AEWRi, and AESRi. 

Table VI shows the relative errors, r, and measures of 
accuracy, d, for several approximations of saturation vapor 
pressure over ice found in the literature. The relative errors 
and measures of accuracy are given for the new relationships we 

We have found new approximations of the basic formulations of 
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Table VI. Maximums of relative errors (r %) and measures of 
accuracy (a) for some formulations and approximations of vapor 
pressure over ice for temperatures between -80 and 0 degree C. 
(Temperature in C for these maximums is given in brackets). 

r ( t )  d 8 (  t 1 r U ( t  d W ( f )  r s ( t  1 d S ( t )  r k (  t )  d t = ( t )  

GG46i .OOO( - ) .OOO( - )  .230(-80) .294(-48) .089( -8) .207( -3) .230<-80) .294(-48) 
UE76i .231(-80) .294(-48) .OOO( - ) .OOO( - 1  .156(-80) .196(-56) .231(-80) -294C-48) 
S090i .089( -8) .208( -3) .156(-80) .196(-56) .OOO( - ) .ODO( - 1  .156(-80) .208( -3) 

HA67i 10.672( -80) 12.930 ( -80) 10.878( -80) 13.180( - 80) 10 738( - 80) 13.0 10 ( -80 1 10.878( -80 ) 13.180 ( -80) 
BU8li .673(-80) .816(-80) .902(-80) 1.093(-80) -747C-80) .905(-80) .902(-80) 1.013(-80) 
AT85i .973( -80) 1.179(-80) 1.201(-80) 1.455(-80) 1.047(-80) 1.268(-80) 1.201(-80) 1.455(-80) 
AL88i .094(-80) .189(-17) .324(-80) .456(-19) .174(-17) .375(-14) .324(-80) .456(-19) 
SA9Oi -672c-80) .814(-80) .900(-80) 1.091(-80) .745(-80) .903(-80) .900(-80) .903(-80) 

B281i .284(-80) .345(-80) .054(-80) .065(-80) .210(-80) .254(-80) .284(-80) .345(-80) 
H086 i  .193(-80) .234(-80) .423(-80) .512(-80) .267(-80) .324(-80) .423(-80) .512(-80) 

I Newly developed approximations: 1 
L 

AEKDi .171(-62) .256( 0 )  
AEGDi .095(-80) .120(-59) 
AEUOi .282( -63) -412C-59) 
AESDi .148(-60) .335( 0) 

AEKRi .163( -65) .231(-63) 
AEGRi .076( -20) .159(-19) 
AEURi .272( -65) .391( 0) 
AESRi .276( -67) .389(-63) 

i 

.213(-80) .258(-21) .106(-61) .166(-16) .213(-80) .258(-21) 

.325(-80) .394(-80) .169(-80) .299(-161 .325(-80) .394(-80) 

.101(-80) .122(-80) .216(-62) .317(-59) .282(-63) .412(-59) 

.256( -80) .310(-80) .loo(-80) .129( 0) .256(-80) .335( 0) 

.164(-80) .327(-22) .109(-19) .230(-17) .164(-80) .327(-22) 

.306(-80) .429(-21) .160(-19) .339(-16) .306(-80) -429C-16) 

.069(-63) .153( 0) .205(-64) .295(-61) .272(-65) .391( 01 

.098(-22) .202(-20) .207(-66) .294(-63) -276C-67) .389(-63) 
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have found. The two most accurate approximations are AEKDi and 
AEKRi. Table VI shows that the relative error for AEKDi and 
AEKRi are 0.213 and 0.164%, respectively. Also the accuracy, d, 
of AEKDi and AEKRi are 0.258 and 0.327%, respectively. Both of 
these formulations are more accurate than the BU8li formulation 
(Buck, 1981). 

6. Enhancement factor 

The departure of the ideal gas law for a mixture of air and 
water vapor leads to errors, which can be eliminated by an 
enhancement or correction factor. The enhancement or correction 
factor is defined as the ratio of the saturation vapor pressure 
for moist air to that of pure water vapor over a plane of water 

and over a plane surface of ice 

Neglecting the correction factor results in relative errors 
(calculated-observed/observed) in the saturation vapor pressure 
of moist air which can reach 0.596 % with respect to water (at - 
40 C, 1000 hPa) and 0.882 % with respect to ice (at -80 C, 1000 
hPa) . 

We have developed the following approximations to the data in 
Table 4.10 WMO (1966)' which describes the behavior of the 
enhancement factor over water and ice: 

f,(p) = 1. O0071xe0~0000045p, ( 2 0 )  

and 

f i  ( p )  = 0 .99882xe0.000008P, (21) 

where p is the pressure in hPa. These two approximations have 
maximum relative errors of 0.c1773 % (at 0 C, 900 hPa) over a 
plane surface of water, and 0.209% relative error (at -80 C, 1000 
hPa) over a plane surface of ice, respectively. 

Buck (1981) developed equations for the enhancement factor fo r  
water and ice. Buck' equations are: 

f, = 1 . 0 0 0 7  + 3.46~10-~p, (22)  
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and 

fi = 1.0003+4.18~10-~p. (23) 

Equations (22) and (23) have maximum relative errors of 0.183 % 
and 0.438 % #  respectively. The new approximations (21) and (22) 
of the enhancement coefficient are more accurate than Bucks' 
approximations. 

Bogel (1977) developed the most accurate fit to experimental 
data for the enhancement factor. The enhancement factor (22) for 
water gives us a maximum relative error 0.088 % with respect to 
the enhancement factor for water of Bogel, which is given below: 

10-4ew( t) 
[ (38+173e-t/43) ( l - ew(  t) / p )  

(273 +t) f , ( P , t )  = 1+ 

- (6.339+4 .28e-t/107) ( l - p / e w (  t) 1 . 

7. Conclusions 

To calculate the saturation vapor pressure of pure water over 
a plane surface of water for the temperature range of -40 C to 
50 C, we recommend the simple and accurate approximation, AEKR: 

This equation gives a maximum relative error of less then 0.384%, 
and a maximum measure of accuracy of less than 0.868 with respect 
to any of the three basic formulations GG46, WE76, and S090. 

For a mixture of pure water and moist air, we recommend 

e,(t) = 1.00071 x e o ~ o o o o o 4 5 ~ x e  W (t) . 

Equation (26) gives a maximum relative error of less than 0.414%, 
and a maximum measure of accuracy less than 0.932 with respect to 
the three basic formulations and the WMO's form (1966) or Bogels' 
(1977) enhancement factor. 

For saturation vapor pressure over a plane surface of ice (-80 
C to 0.0 C), we recommend following two approximations. To 
calculate the saturation vapor pressure of pure water vapor over 
ice use AEKRi 

which has a maximum relative error less then 0.213%, and a 
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maximum 
any from three basic formulations GG46, WE76 or S090. For moist 
air use the following equation 

measure of accuracy of less than 0.258 with respect to 

ewi ( t) = 0.99882 xeo*ooooo8pXej  ( t) . 

This equation (28) has a maximum relative error less t..an 0.397%, 
and a maximum measure of accuracy less than 0.721 with respect to 
any from three basic formulations and the WMO (1966) enhancement 
factor. 

It is worth noting that the errors discussed in this paper are 
much less than observational errors in humidity values due to the 
hygrometers. But the use of (relatively) inaccurate formulas 
leads to the appearance of systematic errors in meteorological 
data. These errors increase the complexity of the statistical 
structure of the data. 
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Appendix 

Fig. 2 shows a d , (a ,b , c )  surface which is very complex, the 
rk(a,b,c) surface which is not shown is also complex. This 
surface has numerous local minima, and it is not easy to use 
standard mathematical methods to find a global minimum on the 
surface d,. The simplest way to find coefficients a’, b’ and c’, 
which describe the minimum d,, is to iterate over a dense 
three-dimensional set of points ( a ,  b, c) calculating d, and find 
the minimum ( a / , b ’ , c ’ ) .  
In order not to miss a real minimum, we need to use small 

increments for each step in the iteration (we used 0.001 for a ,  
0.01 for b, and 0.0001 for c ) .  However, this fine resolution 
produces a matrix of points which is too large and requires too 
much computer time to iterate over all of the points in the 
matrix. 

We can significantly reduce the number of points ( a , b , c )  to 
iterate over if we solve a similar, but simpler task. 
consider the expression (12) where e(t) is defined by ( 8 ) .  Using 
simple transformations we obtain the following 

Let‘s 

t 

It is clear that d, will be small only if the exponent of e is 
close to zero. The exponential can be expanded in a Taylor 
series. If we assume that the exponent is small, the conditions 
of interest, the higher order terms of the Taylor‘s series 
expansion can be neglected. These assumptions lead to the 
following expression, 

t 

The solution is found by finding min(d,). However, this is a 
very difficult problem to solve. The definition of the absolute 
value suggests an approximation to (30) which is much simpler to 
solve 
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To solve (31), b is fixed and a system of linear equations are 
generated and solutions are found. The solution to (31) is not 
exactly the solution to (30). However, experience has shown that 
it is a close approximation to (30), and hence to (12). 

( a , b , c )  used to find the minimum d,. We can use the 
relationships a = a ( b )  and c = c(b)  for each fixed b to limit the 
iteration to small neighborhoods of a and c. 

This procedure generates a three-dimensional set of points 
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