
Introduction to Programming in R by Timothy DelSole

In addition to learning statistics, you also will learn how to use a statistical package known as R.
I have decided to include R in this course because I have observed in the past that students who make
use of mathematical packages such as Matlab or R have a far easier time with homework than students
who code everything in Fortran or C. R has been chosen because it is Open Source (i.e., free), well
documented, supported by a large community, specifically designed for data analysis and graphical
display, and at the present time appears to be the most widely used statistical package by statisticians.
Even though learning a new programming environment takes time, I believe that overall you will save
more time on the homeworks as a result of using R than you will spend learning R itself.

The following introduction assumes that you are familiar enough with computers to login, change
directories, and edit files. Please contact me if this is not the case.

This introduction will familiarize you with the main commands in R that are most needed to
perform the statistical calculations described in the first few chapters of this book.

1 Installing R

You can either download R yourself or use the R code installed at the COLA computers. I personally
downloaded R onto my MAC laptop from http://cran.r-project.org/bin/macosx/ without any trouble
at all. I am not able to provide support for installing R.

You are advised to create a separate directory for each statistical project on which you work. I
suggest first creating the directory “CLIM762”, which will contain all your work for this class, and
then creating the subdirectory “R intro,” which will contain the work for this introductory session.

2 Running R

If you are on a Linux or Unix system, you start an R session by typing R (make sure you use capital
R, not lower case r– commands in UNIX and R are case sensitive). On the Mac or PC, you click the
R icon. In either case, you should see a greeting that looks something like the following:
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1 R version 2.13.1 (2011-07-08)
2 Copyright (C) 2011 The R Foundation for Statistical Computing
3 ISBN 3-900051-07-0
4 Platform: i386-apple-darwin9.8.0/i386 (32-bit)
5

6 R is free software and comes with ABSOLUTELY NO WARRANTY.
7 You are welcome to redistribute it under certain conditions.
8 Type ’license()’ or ’licence()’ for distribution details.
9

10 Natural language support but running in an English locale
11

12 R is a collaborative project with many contributors.
13 Type ’contributors()’ for more information and
14 ’citation()’ on how to cite R or R packages in publications.
15

16 Type ’demo()’ for some demos, ’help()’ for on-line help, or
17 ’help.start()’ for an HTML browser interface to help.
18 Type ’q()’ to quit R.
19

20 [R.app GUI 1.41 (5874) i386-apple-darwin9.8.0]
21

22 >

The last line is the > symbol, which is the R prompt. You type commands at the R prompt interac-
tively. This interactive window is called the console.

For codes longer than a dozen lines or so, you will want to save code in a text file. Suppose that
the name of the file containing the R code is calculations.R, then

1 source("calculations.R")

will cause R to accept input from the named file. In particular, each line in the file calculations.R
will be evaluated sequentially just as if they were typed in the interactive window. After all expres-
sions in the file have been evaluated, R will return to interactive mode. If an error occurs, then R will
terminate reading from the file, and no assignment contained in the source file will be committed.
Thus, execution of a source file is all-or-nothing: either all expressions in the source file are executed
without error, or if an error occurs, then none of the assignments inside the file are executed. By
default, none of the expressions inside the source file will be repeated. This can be problematic when
a error occurs, because the error message may give no clue as to which line caused the error. To force
R to echo the expressions to the terminal before evaluating them, use the echo=TRUE argument:

1 source("calculations.R",echo=TRUE)

3 Numeric Vectors

The easiest way to teach a programming language is by example. So, let’s get started. First, let us
create a variable named x and set its value to 5:
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1 > x = 5
2 > x
3 [1] 5

In the above example, we typed x = 5 in line 1. This is an example of an assignment statement.
Assignments can be executed using either = or <-, where the latter is merely a ‘greater than’ symbol <
followed by a dash -. In certain situations, = does not work, so <- is preferred; nevertheless, we will
use = in this introduction. The command x = 5 performs two operations: first, it creates a variable
x, and second, it sets the value of x to 5. In line 2, we typed x by itself. Line 3 shows R’s response,
which is “[1] 5”, indicating that the first element of x is 5. It is worth emphasizing that the =
function does not mean “equal to,” but rather means “assign a value to.” This distinction is especially
important when the variable occurs on both sides of =. For instance, consider the following:

1 > x = 5
2 > x = x + 1
3 > x
4 [1] 6

If the function = were interpreted as “equal to,” then line 2 would define an equation to be solved
for x. Moreover, the solution to this equation is the null set– no value of x satisfies the equation
x = x + 1! However, the proper interpretation of line 2 is: first evaluate the right hand side by
incrementing the value of x by one, then assign the resulting value to x, thereby overwritting the
original value of x.

Most numerical calculations are performed on groups of numbers. The basic way of handling
groups of numbers in R is with vectors. A vector is a collection of elements each identified by
an index. A function for creating vectors is the concatenation function c(arg1, arg2, ...,
argn). This function combines an arbitrary number of objects end to end into a single vector.

1 > x = c(1,100,-4.5,8)
2 > x
3 [1] 1.0 100.0 -4.5 8.0

Line 1 creates a four-dimensional vector whose elements are 1, 100, -4.5, and 8. Next, typing x by
itself in line 2 tells R to write out all the elements of x.

Individual elements of a vector are accessed using brackets [ ]. For instance, the 3rd element of
x is obtained as follows:

1 > x[3]
2 [1] -4.5

Multiple elements can be accessed by using vector arguments, as the following example illustrates.
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1 > x = c(1,100,-4.5,8)
2 > x
3 [1] 1.0 100.0 -4.5 8.0
4 > x[c(1,4)]
5 [1] 1 8
6 > y = c(1,4)
7 > x[y]
8 [1] 1 8

More sophisticated ways of subsetting a vector will be discussed in sec. 10.

After a vector is created, any element can be accessed or written, including elements that have not
been assigned. A vector has as many elements as the last element that has been assigned. Elements
that have not been assigned are automatically assigned NA.

1 > rm(z) # remove the vector z
2 > z[10] # access 10th element of z (which is invalid since z does not exist)
3 Error: object ’z’ not found
4 > z = 1 # create a 1D vector and assign the first element 1
5 > z
6 [1] 1
7 > z[10] # access the 10th element of z
8 [1] NA
9 > z[10] = 4 # assign the 10 element of z to 4

10 > z
11 [1] 1 NA NA NA NA NA NA NA NA 4

In the above example, we have used # to insert comments. R will ignore all characters to the right of
# on the same line.

4 Functions for Creating Numeric Vectors

An R function is of the form

1 fun.name(arg1,arg2,...)

where fun.name is the name of the function, and arg1, arg2, ... are arguments to the
function. We have already met a function in the preceding section, namely the concatenation function
c(). Two other frequently used functions are seq and rep. The function seq, for “sequence,”
generates regular sequences of numbers, as illustrated by the following examples:
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1 > seq(from=1,to=10)
2 [1] 1 2 3 4 5 6 7 8 9 10
3 > seq(from=1,to=10,by=2)
4 [1] 1 3 5 7 9
5 > seq(from=0,length.out=7,by=0.5)
6 [1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Regular sequences occur frequently in data analysis and graphical procedures, so this function will
be seen often in future examples. The special case of step size 1 can be handled using the : syntax.
The sequence also may be in decreasing order, include negative numbers, and be non-integers:

1 > 1:10
2 [1] 1 2 3 4 5 6 7 8 9 10
3 > 3:-7
4 [1] 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
5 > 2.4:9.4
6 [1] 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4

The rep function, short for “repeat,” replicates an object. When the object is a vector, the behavior of
rep can be controlled with the arguments each and times, as illustrated in the following examples:

1 > x = c(2,4,6)
2 > rep(x,times=3)
3 [1] 2 4 6 2 4 6 2 4 6
4 > rep(x,each=3)
5 [1] 2 2 2 4 4 4 6 6 6

Of course, the above functions can be combined in an infinite variety of ways to create new vectors:

1 > x = seq(2,8,2)
2 > x
3 [1] 2 4 6 8
4 > y = rep(1:3,4)
5 > y
6 [1] 1 2 3 1 2 3 1 2 3 1 2 3
7 > z = c(rep(x,2),y)
8 > z
9 [1] 2 4 6 8 2 4 6 8 1 2 3 1 2 3 1 2 3 1 2 3

R has a variety of functions for getting properties of vectors, some of the most useful of which
are summarized in table 1.

5 Functions Related to Probability Theory

R contains a variety of functions related to probability theory. For example, typing rnorm(25) in
the R console tells R to generate 25 random numbers from a (standardized) normal distribution:

5



length(x) number of elements in x
min(x) smallest element in x
max(x) largest element in x
range(x) c(min(x),max(x))
sum(x) sum of the elements of x
prod(x) product of the elements of x
mean(x) average of the elements of x
median(x) median of the elements of x
sort(x) sort the elements of x in ascending order

Table 1: Common R functions for extracting properties of a vector

1 > rnorm(25)
2 [1] -0.62645381 0.18364332 -0.83562861 1.59528080 0.32950777
3 [6] -0.82046838 0.48742905 0.73832471 0.57578135 -0.30538839
4 [11] 1.51178117 0.38984324 -0.62124058 -2.21469989 1.12493092
5 [16] -0.04493361 -0.01619026 0.94383621 0.82122120 0.59390132
6 [21] 0.91897737 0.78213630 0.07456498 -1.98935170 0.61982575

Lines 2-6 show the response from R. The bracketed numbers [1], [6], [11], [16], [21]
at the beginning of each line give the index of the first number on that line. For example, 1.51178117
is the 11th random number generated.

To fit the above printout into this document, a shortened line width is used. Also, the precise
numbers generated by rnorm(25) differ for each execution, so the numbers you obtain will differ
from those above. To achieve the same random numbers as above, type set.seed(1) just before
rnorm(25). This function sets the initial “seed” value for generating pseudorandom numbers, using
a procedure whose details are not important at the moment. It is recommended that the seed value be
set explicitly for all your programs. This coding practice ensures that the same random numbers will
be generated for each execution, a property that facilitates debugging. You should then change the
seed value and verify that your results are insensitive to the seed value. Also, to achieve the same line
width as used in this introduction, type options(width=70):

1 > options(width=70)
2 > set.seed(1)
3 > rnorm(25)
4 [1] -0.62645381 0.18364332 -0.83562861 1.59528080 0.32950777
5 [6] -0.82046838 0.48742905 0.73832471 0.57578135 -0.30538839
6 [11] 1.51178117 0.38984324 -0.62124058 -2.21469989 1.12493092
7 [16] -0.04493361 -0.01619026 0.94383621 0.82122120 0.59390132
8 [21] 0.91897737 0.78213630 0.07456498 -1.98935170 0.61982575

You should now see precisely the same output in your R console as shown above.

More details of a function can be obtained by typing the function name preceded by a question
mark, as follows.
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1 ?rnorm

After typing this command, you will see a lot of documentation which probably does not make a lot
of sense at this point. However, one of the lines is

1 rnorm(n, mean = 0, sd = 1)

This line states that the function rnorm has three arguments, namely n, mean, sd. Moreover,
the argument n is required while the parameters mean and sd have default values equal to 0 and
1, respectively. Further reading of the documentation reveals that rnorm(n) generates n random
numbers from a normal distribution with zero mean and unit variance. To draw normal random
numbers from a normal distribution with a different mean and standard deviation, say a mean of 2
and standard deviation of 3, we would type the following

1 > set.seed(1)
2 > rnorm(25,mean=2,sd=3)
3 [1] 0.1206386 2.5509300 -0.5068858 6.7858424 2.9885233 -0.4614052
4 [7] 3.4622872 4.2149741 3.7273441 1.0838348 6.5353435 3.1695297
5 [13] 0.1362783 -4.6440997 5.3747928 1.8651992 1.9514292 4.8315086
6 [19] 4.4636636 3.7817040 4.7569321 4.3464089 2.2236950 -3.9680551
7 [25] 3.8594772

It is not necessary to explicitly state the name of each argument. For instance, rnorm(25,2,3)
is equivalent to rnorm(25,mean=2,sd=3), because R assumes that the order of the un-named
arguments matches the order specified in the manual pages. On the other hand, if the parameters are
explicitly named, then they can occur in any arbitrary order. The first un-named argument is assumed
to be the first un-specified argument:

1 > set.seed(1)
2 > rnorm(sd=3,n=25,mean=2)
3 [1] 0.1206386 2.5509300 -0.5068858 6.7858424 2.9885233 -0.4614052
4 [7] 3.4622872 4.2149741 3.7273441 1.0838348 6.5353435 3.1695297
5 [13] 0.1362783 -4.6440997 5.3747928 1.8651992 1.9514292 4.8315086
6 [19] 4.4636636 3.7817040 4.7569321 4.3464089 2.2236950 -3.9680551
7 [25] 3.8594772

R has functions not only for generating random numbers, but also for evaluating various proba-
bilities, such as the cumulative distribution function P (Z  z), the probability density function p(z),
and the quantile function. The following illustrates the use of these functions:
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1 > pnorm(0) # probability that Z < 0
2 [1] 0.5
3 > dnorm(0) # probability density at z = 0
4 [1] 0.3989423
5 > qnorm(0.975) # the smallest z such that P(Z < z) > 0.975
6 [1] 1.959964

R also has similar functions for other distributions. The most useful for introductory statistics are
summarized in table 2.

R name distribution parameters defaults

chisq chi-squared df, ncp -,0
f F df1, df2, ncp -, -, 0
norm normal mean, sd 0, 1
t Student’s t df, ncp -, 0
unif uniform min, max 0, 1

Table 2: R functions for common distributions.

To evaluate the cumulative distribution, probability density, and quantile of the F distribution, say
with parameters df1=5, df2=5, ncp=0, we would use the following commands:

1 > pf(0.5,5,10) # probability that F < 0.5, for F-dist with 5 and 10 dof
2 [1] 0.2299751
3 > df(0.5,5,10) # density of F at x = 0, for F-dist with 5 and 10 dof
4 [1] 0.687607
5 > qf(0.95,5,10) # smallest x such that P(F<x) > 0.95
6 [1] 3.325835

R has a number of functions for numerical computation, including the familiar functions log,
exp, sin, cos, tan, sqrt, abs. Many other functions can be found by typing ?Math.
All standard functions in R will accept vectors as arguments and evaluate the function element wise.

1 > x = c(1,2,3,4,5)
2 > sqrt(x)
3 [1] 1.000000 1.414214 1.732051 2.000000 2.236068
4 > log(x)
5 [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
6 > log(x)/sqrt(x)
7 [1] 0.0000000 0.4901291 0.6342841 0.6931472 0.7197625

6 Logical Vectors

In addition to numerical vectors, R uses logical vectors. A logical vector is a vector that takes on the
values TRUE or FALSE (or NA when missing data exists, as explained later). The abbreviations T and
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F can be used for assignments, although this is generally discouraged. Logical vectors can be created
using c and rep.

1 > x = c(T,F,T)
2 > x
3 [1] TRUE FALSE TRUE
4 > rep(x,2)
5 [1] TRUE FALSE TRUE TRUE FALSE TRUE
6 > rep(x,each=2)
7 [1] TRUE TRUE FALSE FALSE TRUE TRUE

Logical vectors also can be created using the comparison operators summarized in table 3. Note that
equality is tested using the double equal sign ==, which should be sharply distinguished from the
single equal sign =, which is used for assignments. If the comparison operator is applied to vectors,
the comparison operator is applied element-by-element.

< “less than”
> ‘greater than”
<= ‘less than or equal to”
>= ‘greater than or equal to”
== ‘equal to”
! = ‘not equal to”

Table 3: Comparison operators in R

1 > 2 > 4
2 [1] FALSE
3 > 2 < 4
4 [1] TRUE
5 > x = c(1,2,3)
6 > y = c(-1,3,-5)
7 > x < y
8 [1] FALSE TRUE FALSE

Vectors can be assigned the value of comparison operators.

1 > x = c(1,2,3)
2 > y = c(0,2,4)
3 > z = x == y
4 > z
5 [1] FALSE TRUE FALSE
6 > w = x <= y
7 > w
8 [1] FALSE TRUE TRUE
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Line 3 may confuse you if you haven’t caught the difference between the assignment = and com-
parison ==. To be clear, the comparison operator == is evaluated first, so x == y yields the value
FALSE TRUE FALSE, which is then assigned to z.

Logical expressions can be combined using the logical operators &, |, !, which correspond to the
logical and, or, and not.

1 > x = c(1,2,3)
2 > xge2 = x >= 2
3 > xge2
4 [1] FALSE TRUE TRUE
5 > !xge2
6 [1] TRUE FALSE FALSE
7 > y = c(-1,3,-5)
8 > yg1 = y > 1
9 > yg1

10 [1] FALSE TRUE FALSE
11 > xge2 & yg1
12 [1] FALSE TRUE FALSE

Two useful functions for summarizing logical vectors are any and all, which take logical vec-
tors and return a single TRUE or FALSE, depending on whether any or all elements are TRUE.

1 > x = c( -1, 8, 5, -3)
2 > any(x > 0) # is any element of x is positive?
3 [1] TRUE
4 > all(x > 0) # are all elements of x are positive?
5 [1] FALSE

7 Character Vectors

Character variables are contained in single quotes or double quotes. Double quotes is preferred to
avoid confusion with other symbols in certain fonts. Character vectors may be concatenated using
c().

1 > x = c("mike","tim","tony")
2 > x
3 [1] "mike" "tim" "tony"
4 > x[2]
5 [1] "tim"

A more sophisticated concatenation function is paste(), which coerces its arguments to char-
acter strings and then concatenates them, separated by the string sep, whose default value is " ".
If the arguments are vectors, then paste concatenates the vectors term-by-term. If the vectors have
different sizes, then shorter vectors are reused cyclically until all elements of the longest vector have
been concantenated.
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1 > x = c("mike","tim","tony")
2 > paste(x,3)
3 [1] "mike 3" "tim 3" "tony 3"
4 > paste(x,1:3)
5 [1] "mike 1" "tim 2" "tony 3"
6 > paste(x,1:3,sep=" is number ")
7 [1] "mike is number 1" "tim is number 2" "tony is number 3"

To concatenate vectors into a single string, use the collapse argument:

1 > x = c("mike","tim","tony")
2 > paste(x,1:3,collapse=" ")
3 [1] "mike 1 tim 2 tony 3"
4 > paste(x,1:3,sep=" is number ",collapse = " and ")
5 [1] "mike is number 1 and tim is number 2 and tony is number 3"

Numbers and logicals can be coerced into character strings using as.character. The function
is.character is used to determine whether a variable is a character. A number of functions for
parsing strings also exist, including substr, nchar, strsplit, sub, grep.

8 Modes

Each object in R has a mode. The most common modes are "null", "logical", "numeric",
"complex", "character", "list". Many operations that are applied to groups of variables
require the variables to have the same mode, otherwise the variables are coerced into the required for-
mat. For instance, all items in a vector must have the same mode. If the concatenation function is
applied to objects with differing modes, such as a mix of numeric and character strings, then the ob-
jects are coerced into the same mode according to certain rules (as spelled out in the documentation
page). The mode of x can be ascertained using mode(x). To test whether a variable has a certain
mode, use functions like is.null, is.logical, is.character. To coerce an object into
a certain mode, use functions like as.null, as.logical, as.character.

9 Vector Arithmetic

The arithmetic operators for add, subtract, multiply, and divide are +, -, *, /, respectively. The
power operator is ˆ; e.g., 2 ˆ 3 is 8. The modulo operator %% gives the remainder when the first
argument is divided by the second. Arithmetic operators applied to vectors are performed element-
by-element.
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1 > 2+3 # add 2 and 3
2 [1] 5
3 > 2*3 # multiply 2 and 3
4 [1] 6
5 > 10 %% 4 # divide 10 by 4 and give the remainder
6 [1] 2
7 > x = c(1,2,3)
8 > 1/x # divide 1 by each element of x
9 [1] 1.0000000 0.5000000 0.3333333

10 > y = c(4,5,6)
11 > x * y # multiply x and y elementwise
12 [1] 4 10 18
13 > x / y # divide x by y elementwise
14 [1] 0.25 0.40 0.50
15 > y ˆ x # take each element of y to the corresponding power of x
16 [1] 4 25 216

The vectors occurring in the same expression do not need to be the same length. If the vectors
have different sizes, then shorter vectors are reused cyclically until they match the length of the

longest vector. This process is called recycling.

1 > x = c(1,2,3,4,5,6)
2 > y = c(1,3)
3 > x * y
4 [1] 1 6 3 12 5 18
5 > 2 * y
6 [1] 2 6
7 > z = x * y + 2 * y + 1
8 > z
9 [1] 4 13 6 19 8 25

In line 3, the term x * y is evaluated by first cyclically repeating the y vector three times, yielding
the vector (1,3,1,3,1,3), then multiplying this vector by x element by element, yielding line 4.
Similarly, line 5 is evaluated by repeating 2 twice, yielding the vector (2,2), then multiplying this
vector by y element wise, yielding line 6.

If one of the smaller vectors is not an integral fraction of the longest vector, then R correctly evalu-
ates the arithmetic expression, but also generates a warning message. This warning message is useful
for debugging purposes since many important applications of recycling require integral recycling.

When arithmetic operators are applied to logical variables, TRUE and FALSE are coerced into the
integers 1 and 0, respectively, then the arithmetic operator is applied. This feature is especially useful
for determining the fraction of cases that satisfy a condition.
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1 > set.seed(1)
2 > x = rnorm(10)
3 > x
4 [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 -0.8204684
5 [7] 0.4874291 0.7383247 0.5757814 -0.3053884
6 > x < 0
7 [1] TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
8 > mean(x<0) # determine the fraction of cases in which x < 0
9 [1] 0.4

An example that illustrates many of the above features is the following. Consider a vector xi for
i = 1, 2, . . . , N . Compute the unbiased variance estimate

�̂

2
X =

1
N � 1

NX

i=1

(xi � µ̂X)2 , (1)

where µ̂X is the sample mean of xi. A solution is shown in line 5 below:

1 > set.seed(1)
2 > x = rnorm(5)
3 > x
4 [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078
5 > x.var = sum((x-mean(x))ˆ2)/(length(x)-1)
6 > x.var
7 [1] 0.9235968
8 > var(x)
9 [1] 0.9235968

It is important to fully understand how line 5 is evaluated. First, the function mean(x) is evaluated,
which generates a single number, then this number is repeated five times so that it can be subtracted
from the vector x element by element. The resulting difference is then squared element-wise and
summed. This number is then divided by length(x)-1, which is 4 in this example. Line 9 verifies
that the variance computed in line 5 matches the variance computed by the function var(x).

10 Vector Indexing

A very powerful feature of R is that particular elements of a vector can be extracted or assigned using
the format x[subscript], where subscript is a vector. This process is called indexing. The
value of subscript can take on different forms, each of which has important applications.

1. subscript can be a vector of positive integers, in which case x[subscript] will access
the elements of x corresponding to the indices given by subscript.
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1 > x = c(8,-2,4,1,-5,3)
2 > x[1] # extract the 1st element of x
3 [1] 8
4 > x[1:3] # extract the first three elements of x
5 [1] 8 -2 4
6 > x[c(1,5,5,3)] # extract the 1st, 5th, 5th, 3rd elements of x
7 [1] 8 -5 -5 4
8 > y = c(1,3,2)
9 > x[y]

10 [1] 8 4 -2

Note that an index can be repeated more than once, as done in line 6. Indexing also can be used
to re-assign the value of x.

1 > x = c(8,-2,4,1,-5,3)
2 > x[1] = -3 # assign the 1st element of x to -3
3 > x
4 [1] -3 -2 4 1 -5 3
5 > y = 3:6
6 > x[y] = c(0,1) # assign elements 3-6 of x to the vector (0,1,0,1)
7 > x
8 [1] -3 -2 0 1 0 1

Line 2 reassigns the first element of x to -3. Line 6 re-assigns lines 3-6 to the vector (0,1,0,1)
(where the vector y is recycled).

2. subscript can be a vector of logical values, in which case x[subscript] will access the
elements for which the corresponding value of subscript is TRUE. This form of indexing is
very useful for extracting values of a vector that satisfy certain conditions.

1 > rain = c(1,4,2,6)
2 > temp = c(3,2,5,4)
3 > desert = rain < 3 & temp >= 4
4 > desert
5 [1] FALSE FALSE TRUE FALSE
6 > rain[desert]
7 [1] 2

3. subscript can be a vector of negative integers, in which case x[subscript] will pro-
duce all elements of x except the corresponding elements of -subscript. This feature is
especially useful for leave-one-out cross validation procedures.

1 > x = c(8,-2,4,1,-5,3)
2 > x[c(-3,-5)]
3 [1] 8 -2 1 3

4. subscript can be character strings. This feature will be discussed in sec. ?.
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11 Missing Values

In some cases, certain elements of a vector are not known, perhaps because the corresponding obser-
vations are “missing” or “not available.” The special value NA can be assigned to such elements. Any
operation involving NA is set to NA.

1 > x = c(2, -4, NA, 3)
2 > x
3 [1] 2 -4 NA 3
4 > y = rep(1,4)
5 > y
6 [1] 1 1 1 1
7 > x + y
8 [1] 3 -3 NA 4

Different functions treat NA in different ways, often depending on certain arguments. This fact is
illustrated in the following example.

1 > x = c(2, -4, NA, 3)
2 > sum(x)
3 [1] NA
4 > sum(x,na.rm=TRUE)
5 [1] 1
6 > mean(x,na.rm=TRUE)
7 [1] 0.3333333

Line 1 creates a four-element vector, with one element assigned to NA. Line 3 shows that the sum of
the elements of x is assigned NA, because one of the elements is NA. Lines 5 and 7 give the sum and
mean of the elements of x, after all NA’s have been removed.

The elements of vector that are NA can be determined using the is.na function. In particular,
is.na(x) generates a logical vector such that TRUE indicates that the corresponding element in
x is NA. Note that the logical expression x == NA is NA for any x, reflecting the fact that testing
equality with respect to an unknown value is not defined.

It is good programming practice to initialize all vectors with NA; e.g., using x = rep(NA,10).
For instance, if all elements of the initialized vector are expected to be assigned a numerical value,
then finding a vector containing NA at the end of a code indicates a programming bug.

Other forms of “missing” values are produced by arithmetic operations. For instance, 1/0 is
assigned Inf, while 0/0 is assigned NaN. The functions is.infinite and is.nan are used to
determine whether an element is Inf and NaN, respectively.

Another value worth mentioning is NULL, which is essentially an “empty” object. Concatenating
a set of vectors with the NULL value results in just the vectors without the NULL value; in contrast,
concatenating a set of vectors with NA will include NA values.
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1 > c(1,2,3,NULL)
2 [1] 1 2 3
3 > c(1,NULL,2,NA)
4 [1] 1 2 NA

The command is.null(x) is TRUE if x is assigned to NULL. The NULL value has several uses
which will be explained as needed.

12 Loops

Many calculations need to be performed repeatedly with different calculations depending on inter-
mediate results. Such calculations often require control-flow constructs. We have avoided discussing
control-flow for a very good reason: R is efficient at evaluating vectorized expressions, so it is impor-
tant to perform iterative calculations in vectorized form if at all possible. If this is not possible, then
the most common control-flow construct is the for loop construction, which has the form

1 for ( i in vector ) expr

where i is a variable that is assigned to each element of vector successively, and expr is an
expression that is evaluated once for each assignment. Usually, expr depends on i. As a simple
example, let us add the vectors x and y together to form z. The vectorized approach is to type z =
x + y, while an equivalent approach using the for-loop is

1 for ( i in 1:ntot) z[i] = x[i] + y[i]

In this example, the statement for ( i in 1:ntot) tells R to execute the expression follow-
ing it for i=1, then i=2, etc. until i = ntot. Thus, R first evaluates the expression z[1] =
x[1] + y[1], followed by z[2] = x[2] + y[2], and so on until z[ntot] = x[ntot]
+ y[ntot].

Although the above loop is equivalent to the vectorized expression z = x + y, the two ap-
proaches have very different execution times, which can be shown using the command system.time.

1 > ntot = 1000000
2 > x = rnorm(ntot)
3 > y = rnorm(ntot)
4 > z = numeric(length=ntot)
5 > system.time( z <- x + y)
6 user system elapsed
7 0.012 0.002 0.014
8 > system.time(for ( i in 1:ntot) z[i] = x[i] + y[i])
9 user system elapsed

10 3.006 0.010 3.000
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The above shows that the vectorized calculation takes only 0.014 seconds, while the for loop takes
3 second– over 200 times longer. This simple example should make clear that vectorized calculations
are preferred over for-loops, when possible.

A subtle point in the above example should be emphasized: the vector z was created before the
for-loop was executed. The reason for creating the vector z is that the brackets [ ] cannot extract
an element of a vector unless the vector itself exists, as the following example illustrates:

1 > rm(x,y,z)
2 > ntot = 10
3 > x = rnorm(ntot)
4 > y = rnorm(ntot)
5 > for ( i in 1:ntot) z[i] = x[i] + y[i]
6 Error in z[i] = x[i] + y[i] : object ’z’ not found

As the error message indicates, the for-loop failed because z did not exist: the rm command in line
1 “removed” the vector z from memory. To avoid this error, the variable z needs to exist before the
loop. One way to do this is to use the command z = numeric(length=ntot), which creates a
numeric vector of length ntot with all elements equal to zero. However, a good habit is to initialize
vectors with NA:

1 > z = numeric(length=10)
2 > z
3 [1] 0 0 0 0 0 0 0 0 0 0
4 > z = as.numeric(rep(NA,10))
5 > z
6 [1] NA NA NA NA NA NA NA NA NA NA

Commands may be grouped with braces and separated by either semicolons or new lines. As a
simple example, we use a for loop to calculate the correlation coefficient between two independent
random variables 1000 times

1 > set.seed(1)
2 > ntot = 1000; ndim = 10
3 > xy.cor = as.numeric(rep(NA,ntot))
4 > for ( i in 1:ntot) {
5 + x = rnorm(ndim); y = rnorm(ndim)
6 + xy.cor[i] = cor(x,y)
7 + }
8 > mean(xy.cor)
9 [1] 0.01644176

10 > var(xy.cor)
11 [1] 0.1105325

Note the prompt + inside the for-loop, which indicates that the command is not syntactically com-
plete. In general, if a command is not complete at the end of a line, then R gives the + prompt on each
subsequent line until the command is syntactically complete.
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Other looping constructs include repeat and while.

The object used for looping need not be numeric. For instance, the following example loops over
character strings:

1 > iall = c("red","blue","green")
2 > for ( i in iall ) print(i)
3 [1] "red"
4 [1] "blue"
5 [1] "green"

Loops over character objects are especially useful when indexing objects by character name, or when
only text or graphic output is desired with each iteration.

The command seq(along.with = x) generates the sequence 1,2, ... length(x),
which is handy for generating integer indices for looping.

In some cases, we want to build a vector with each iteration, for instance using the concatenation
function. The tricky part is starting the process, since the very first time the loop is executed the vector
needs to exist before it can be concatenated. This is where the NULL value becomes useful:

1 > rm(x)
2 > for ( i in 1:10) x = c(x,i)
3 Error: object ’x’ not found
4

5 > x = NULL
6 > for ( i in 1:10) x = c(x,i)
7 > x
8 [1] 1 2 3 4 5 6 7 8 9 10

Line 3 shows that the loop failed because the concatenation function attempted to concatenate x and i
when x did not exist (it was “removed” from memory by line 1). Lines 5-8 show that if x is initialized
with NULL, then concatenating it with i leaves just i.

13 Conditional Execution

R has an if construct of the form

1 if ( condition ) expr_1

which executes the expression expr 1 only if condition is TRUE. The if-else construct can
be used to execute one expression when the condition is true and another statement when the condition
is false:

1 if ( condition ) expr_1 else expr_2
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The expressions expr 1 and expr 2 could contain further if-else constructs.

A vectorized version of if-else is ifelse, which takes the form

1 ifelse ( condition, x, y)

and returns a vector of the length of the longest argument, with elements x[i] if condition[i]
is true, otherwise y[i].

14 Lists

In certain complex calculations, it is useful to return a wide variety of variables. For instance, in
fitting a linear model, we may want the value of the fitted parameters, their uncertainties, and perhaps
text that describes the data. Similarly, a data set may contain numeric, logical, and character values
that need to be grouped together. The function list can be used to group objects of different modes
together. Each object in the list is called a component.

As an example, suppose we have five temperature measurements in units of Kelvin, and for each
measurement there is a logical variable indicating cloudiness. This data set could be grouped into a
list as follows.

1 > temp = c(275, 279, 285, 300, 294)
2 > cloudy = c(T,F,F,T,F)
3 > tunits = "Kelvin"
4 > stat.data = list(temp,cloudy,tunits)
5 > stat.data
6 [[1]]
7 [1] 275 279 285 300 294
8

9 [[2]]
10 [1] TRUE FALSE FALSE TRUE FALSE
11

12 [[3]]
13 [1] "Kelvin"

Line 4 creates an object called stat.data that groups together the data defined in lines 1-3. Line
5 asks R to write out the contents of the list. The resulting output shows that the list has three
components, indicated by the double bracket [[...]]. Below each component, R writes out the
contents of the respective component. Components of a list are automatically numbered and can be
accessed using the double brackets [[...]]. If the component is a vector, individual elements of
the vector can be accessed using subscripting.
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1 > stat.data[[1]]
2 [1] 275 279 285 300 294
3 > stat.data[[1]][3]
4 [1] 285
5 > stat.data[[2]][c(2,3)]
6 [1] FALSE FALSE

Individual components of a list also can be named and accessed using these names in a variety of
ways, as illustrated below

1 > stat.data = list(temperature=temp,cloudiness=cloudy,units=tunits)
2 > stat.data$temperature
3 [1] 275 279 285 300 294
4 > stat.data[[1]]
5 [1] 275 279 285 300 294
6 > stat.data[["temperature"]]
7 [1] 275 279 285 300 294
8 > stat.data[1]
9 $temperature

10 [1] 275 279 285 300 294

The use of names can be very helpful when the list contains many components– you might for-
get which number corresponds to a particular component. Note the difference in outputs between
stat.data[[1]] and stat.data[1] after lines 4 and 8: the operator [[...]] extracts the
first object in the list and produces a result with the same mode as the object, whereas the operator
[...] is a general subscripting operator and therefore returns a sublist of the original list.

1 > mode(stat.data[[1]])
2 [1] "numeric"
3 > mode(stat.data[1])
4 [1] "list"
5 > stat.data[c(1,3)]
6 $temperature
7 [1] 275 279 285 300 294
8

9 $units
10 [1] "Kelvin"
11

12 > stat.data[1]$temperature
13 [1] 275 279 285 300 294

15 Data Frames

A data frame is a special case of a list in which each component has the same number of elements.
For most purposes, a data frame can be interpreted as a matrix with a fixed number of rows and
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columns, but differing from a matrix in that the columns may have different modes. Data frames can
be constructed using the function data.frame:

1 > temp = c(275, 279, 285, 300, 294)
2 > cloudy = c(T,F,F,T,F)
3 > tunits = "Kelvin"
4 > stat.data = data.frame(temp,cloudy,tunits)
5 > stat.data
6 temp cloudy tunits
7 1 275 TRUE Kelvin
8 2 279 FALSE Kelvin
9 3 285 FALSE Kelvin

10 4 300 TRUE Kelvin
11 5 294 FALSE Kelvin

Note that the component tunits was recycled to complete the matrix. Also, the name of each
column, listed in line 6, is taken from the name of the variable. These names can be set by the user,
similar to the way the names are set in lists. The components of the data frame can be accessed in a
variety of ways, as the following example illustrates:

1 > stat.data = data.frame(temperature=temp,cloudy,tunits)
2 > stat.data
3 temperature cloudy tunits
4 1 275 TRUE Kelvin
5 2 279 FALSE Kelvin
6 3 285 FALSE Kelvin
7 4 300 TRUE Kelvin
8 5 294 FALSE Kelvin
9 > stat.data[1]

10 temperature
11 1 275
12 2 279
13 3 285
14 4 300
15 5 294
16 > stat.data["temperature"]
17 temperature
18 1 275
19 2 279
20 3 285
21 4 300
22 5 294
23 > stat.data[["temperature"]]
24 [1] 275 279 285 300 294
25 > stat.data$temperature
26 [1] 275 279 285 300 294

Many data sets are stored in files with a fixed number of rows and columns. A convenient way to
read these files and load the data into a data frame is to use the command read.table().
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Data frames can be augmented using the commands cbind and rbind, which stand for ‘column-
bind’ and ’row-bind’.

1 > stat.data = data.frame(temperature=temp,cloudy,tunits)
2 > precip = c(1,0.5,0.3,2.1,1.4)
3 > stat.data = cbind(stat.data,precip)
4 > stat.data
5 temperature cloudy tunits precip
6 1 275 TRUE Kelvin 1.0
7 2 279 FALSE Kelvin 0.5
8 3 285 FALSE Kelvin 0.3
9 4 300 TRUE Kelvin 2.1

10 5 294 FALSE Kelvin 1.4
11 > stat.data = rbind(stat.data,c(288,TRUE,’Kelvin’,0.8))
12 > stat.data
13 temperature cloudy tunits precip
14 1 275 TRUE Kelvin 1
15 2 279 FALSE Kelvin 0.5
16 3 285 FALSE Kelvin 0.3
17 4 300 TRUE Kelvin 2.1
18 5 294 FALSE Kelvin 1.4
19 6 288 TRUE Kelvin 0.8

Data frames also can be truncated using the usual subscripting with negative integers:

1 > stat.data[-3]
2 temperature cloudy precip
3 1 275 TRUE 1
4 2 279 FALSE 0.5
5 3 285 FALSE 0.3
6 4 300 TRUE 2.1
7 5 294 FALSE 1.4
8 6 288 TRUE 0.8

Elements of a data frame can be extracted in a wide variety of ways, as illustrated below.
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1 > stat.data[2,]
2 temperature cloudy tunits precip
3 2 279 FALSE Kelvin 0.5
4 > stat.data[2,][3]
5 tunits
6 2 Kelvin
7 > stat.data[2,][[3]]
8 [1] Kelvin
9 Levels: Kelvin

10 > stat.data[2,3]
11 [1] Kelvin
12 Levels: Kelvin
13 > stat.data[,2]
14 [1] "TRUE" "FALSE" "FALSE" "TRUE" "FALSE" "TRUE"
15 > stat.data[[2]][3]
16 [1] "FALSE"

Note that lines 9 and 12 introduce another form of output, namely Levels. Characters in a data
frame are interpreted as “levels” in Analysis of Variance and other statistical procedures. To suppress
this action, use stringsAsFactors=FALSE:

1 > stat.data = data.frame(temperature=temp,cloudy,tunits)
2 > stat.data[2,3]
3 [1] Kelvin
4 Levels: Kelvin
5 > stat.data = data.frame(temperature=temp,cloudy,tunits,stringsAsFactors=FALSE)
6 > stat.data[2,3]
7 [1] "Kelvin"

16 Functions

In addition to supplying standard functions like c(), mean(), sin(), R allows the user to cre-
ate functions. User-created functions provide a powerful way of consolidating calculations, especially
if the function is simple to use. A function is defined by an assignment statement of the form

1 function_name = function(arg_1, arg_2, ... ) expression

After this assignment, the function may be called using the command function name(arg 1,
arg 2, ...), where arg 1, arg 2, ... are expressions giving the value of the arguments.
The value of the function, which may be any mode, is the result of the last expression in the group
evaluated. To illustrate, we take the example in sec. 12 for computing realizations of the correlation
coefficient for random data, and write it as a function:
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1 > cor.random = function(ntot,ndim) {
2 + set.seed(1)
3 + xy.cor = as.numeric(rep(NA,ntot))
4 + for ( i in 1:ntot) {
5 + x = rnorm(ndim); y = rnorm(ndim)
6 + xy.cor[i] = cor(x,y)
7 + }
8 + xy.cor
9 + }

10 >
11 > ntot = 1000; ndim = 10
12 > z = cor.random(ntot,ndim)
13 > mean(z)
14 [1] 0.01644176
15 > var(z)
16 [1] 0.1105325

It is possible to write functions that have optional arguments. Optional arguments are indicated
by = expr in the function definition, where expr is an expression. For instance,

1 f = function(x,y=2) {...}

defines a function with arguments x and y, where y will be assigned the value 2 if the user does
not specify y. Thus, f(1,3) calls the function f with the arguments x=1, y =3, while f(1)
calls the function with the arguments x=1, y=2. As a further illustration, consider the function
cor.random defined above. Suppose we want to change the seed value from 1 to 2 in a particular
call, but for general calls, we would prefer not to specify this argument, in which case the seed value
should automatically be assigned to 1. A function that does this is the following:

1 > cor.random = function(ntot,ndim,iseed=1) {
2 + set.seed(iseed)
3 + xy.cor = as.numeric(rep(NA,ntot))
4 + for ( i in 1:ntot) {
5 + x = rnorm(ndim); y = rnorm(ndim)
6 + xy.cor[i] = cor(x,y)
7 + }
8 + xy.cor
9 + }

10 > mean(cor.random(ntot,ndim))
11 [1] 0.01644176
12 > mean(cor.random(ntot,ndim,1))
13 [1] 0.01644176
14 > mean(cor.random(ntot,ndim,2))
15 [1] 0.01491169

In lines 10 and 12, the function is called with the argument iseed=1. In line 14, the function is
called with the argument iseed=2.
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The next point is very important: functions can access objects that were defined at the time the
function comes into existence, even if these objects do not appear as arguments:

1 > d = 10
2 > e = 20
3 > dumf = function(f) print(f+e)
4 > dumf(d)
5 [1] 30
6 > e = 30
7 > dumf(d)
8 [1] 40
9 > rm(e)

10 > dumf(d)
11 Error in print(f + e) : object ’e’ not found

Line 3 creates a function named dumf that prints the sum f+e, where f is an argument and e is a
variable that existed at the time dumf was created. Line 4 calls dumf with the argument d, which
has been assigned the value 10. Since the value of e when the function was called is 20, the result is
10 + 20 = 30. If the value of e is changed after the function is defined, a subsequent function call
will use the latest value of the object, as illustrated in lines 6-8. If e is removed, then a subsequent
function call produces an error.

For most statistical applications, we strongly advise you to avoid using objects defined outside the
function definition. Instead, this feature should be reserved for advanced applications. Nevertheless,
one needs to be aware of it in order to avoid it. Extensive use of this feature requires understanding
the concepts of scope and environment, which is too advanced for this introduction.

17 Self-Test

Try to perform the following common applications before looking at the answer:

• A vector x contains “missing values” that are identified with the value -99.99. Set these missing
values to NA.

1 > x = c(1,3,-99.99,8,4,3,-99.99)
2 > x[ x== -99.99] = NA
3 > x
4 [1] 1 3 NA 8 4 3 NA

• Given the vector x = c(2,4,6,8,10), insert the number ‘5’ between 4 and 6.

1 > x = c(2,4,6,8,10)
2 > x = c(x[1:2],5,x[3:5])
3 > x
4 [1] 2 4 5 6 8 10

25



18 Quick Examples of More Complicated Tasks

• Find the maximum value along each row of a matrix. There are two relevant functions: apply
or pmax. Also, the do.call function needs to be used in combination with pmax. In general,
the pmax function is faster, often by a lot.

1 > ntrials = 100000
2 > mset = 100
3 > z = rnorm(ntrials*mset)
4 > dim(z) = c(ntrials,mset)
5 > system.time(do.call(pmax,data.frame(z)))
6 user system elapsed
7 0.488 0.247 0.728
8 > system.time(apply(z,1,max))
9 user system elapsed

10 1.016 0.036 1.045
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